

Introduction to IAEA Safeguards

Applied Antineutrino Physics workshop Sponsored by LNL Wente Vineyards • Livermore, CA September 24 – 26, 2006

Brian D. Boyer, Ph.D.

Los Alamos National Laboratory

Nuclear Nonproliferation Division, N-4 September 25, 2006

UNCLASSIFIED

IAEA Safeguards Introduction Topics

- Basic concepts of IAEA Safeguards
- LWR Safeguards
- Issues in LWR Safeguards
- Needs in LWR Safeguards
 - Opportunities for Anti-Neutrino Detector and other new concepts

In the Beginning: Pre-NPT-The Agency's Safeguards System (1961-1968)

- The first system
 - The Agency's Safeguards System (1961)
 - INFCIRC/26
- The 1961 system as extended to cover large reactor facilities
 - The Agency's Safeguards System (1961, as Extended in 1964)
 - INFCIRC/26 and INFCIRC/26/Add.1
- The revised system
 - The Agency's Safeguards System (1965)
 - INFCIRC/66
- The revised system with additional provisions for reprocessing plants
 - The Agency's Safeguards System (1965 as Provisionally Extended in 1966)
 - INFCIRC/66/Rev.1
- The revised system with further additional provisions for safeguarded nuclear material in conversion plants and fabrication plants
 - The Agency's Safeguards System (1965, as Provisionally Extended in 1966 and 1968)
 - INFCIRC/66/Rev.2

Definition of Safeguards - INFCIRC 66

- INFCIRC/66 limited agreement
- Only Israel, India, Pakistan have this agreement in place
- Technical Aim "...that special fissionable and other materials, services, equipment, facilities and information are made available by the Agency.....and are not used in such a way as to further any military purpose."

Treaty on Non-Proliferation of Nuclear Weapons (NPT)

- INFCIRC/66 agreements / Limited Agreements precede NPT (1961-68)
- Negotiations Concluded in 1968
- Entered into Force in 1970
- INFCIRC/153 (corr) agreements
 - Comprehensive Safeguards Agreement (CSA) (June 1972)
- INFCIRC/540 Model Additional Protocol (Sept 1997)
 - Strengthened Safeguards System Post Iraq War (1991)

Definition of Safeguards - INFCIRC 153 (CORR)

- INFCIRC 153(corrected) full scope safeguards
- Technical Aim "...the timely detection of diversion of significant quantities of nuclear material..."
- Safeguards under 153 known as:
 - Full Scope Safeguards
 - Comprehensive Safeguards Agreement

Definition of Safeguards - INFCIRC 540 (CORR) - Additional Protocol

Additional Protocol Provides for more access and information to the IAEA

- For LWR Safeguards key points
 - IAEA can access auxiliary buildings on site
 - Integrated Safeguards
 - > Because of "Broader Conclusion" can reduce some SG effort

Basic Types of IAEA Inspections

- Physical Inventory Verification PIV
 - 1 x year at LWR
- Design Information Verification DIV
 - 1 x year at LWR with PIV

- For timeliness 4 x year at LWRs (for CF and SF)
- For verification of domestic and international transfers
- Additional Protocol INFCIRC 540
 - Complementary Access (CA) Activities
- Special Inspections INFCIRC 153

"Timeliness" - Material Guidelines

Nuclear Material	Material Form	Conversion Time
Pu, HEU or U-233	Metal	few days (7-10)
Pure Pu components	Oxide (PuO ₂)	few weeks (1-3)
Pure HEU or U-233 compounds	Oxide (UO ₂)	few weeks (1-3)
MOX	Non-irradiated fresh fuel	few weeks (1-3)
Pu, HEU or U-233	In scrap	few weeks (1-3)
Pu, HEU or U-233	In irradiated fuel	few months (1-3)
LEU and Th	Unirradiated Fresh Fuel	order of 1 year

"Significant Quantity" - Defined

Nuclear Material	SQ in KG
Pu (<20% Pu-238)	8 kg Pu
U-233	8 kg U-233
HEU (=>20% U-235)	25 kg U-235
LEU (<20% U-235 including natural U and depleted U)	75 kg U-235 (or 10 t nat. U or 20 t depleted U)
Thorium	20 t thorium

Timeliness Goal

MATERIAL CATEGORY	EXAMPLES	TIMELINESS GOAL
Unirradiated Direct -Use	HEU fresh fuel, MOX	1 MONTH
Irradiated Direct -Use	Spent fuel, core fuel	3 MONTHS
Indirect -Use	LEU Fresh fuel	1 YEAR

LWR Safeguards – Fuel Cycle Relevance

Nuclear Material Color Key Yellow – Indirect Use Orange – Irradiated Direct Use Red – Unirradiated Direct Use Pink – Waste

- + No U or Pu
- + OR SGs terminated

LWR Categories

Type 1 - Reactor hall includes spent fuel pool

- VVER 440 (Loviisa 1-2, Paks 1-4, Bohunice 1-4, Rovno 1-2)
- VVER 1000 (Kozloduy 5-6, Temelin 1-2, Khmelnitsky 1, Rovno 3)
- BWRs with SF pool in containment (TVO-1, TVO-2)
- PWRs with SF pool in containment (Biblis 1-2)

Type 2 - Spent fuel pool outside of reactor hall

- PWRs with SF pool in separate building (Krško, Almaraz 1-2)
- BWRs with SF pool in separate building (*Liebstadt*)

LWR Layout - Type I Reactor Design

UNCLASSIFIED

LWR Layout - Type II Reactor Design

UNCLASSIFIED

Examination of records and reports - Accountancy Side of IAEA Safeguards

- Nuclear Material Accountancy Terms
 - PIV = physical inventory verification
 - PIL = physical inventory listing
 - LII = list of inventory items
 - MBR = material balance report
 - ICR = inventory change report
- Check the movements of nuclear material
 - Receipts
 - Shipments
 - Transformation calculate nuclear loss (U) and production (Pu)
- Reactors LWR, OLRs (On Load Reactors), Fast Reactors
 - Item Facilities all nuclear material in unit form (Fuel Assemblies)
 - No Material Unaccounted For (MUF) expected
 - Shipper/receiver difference (SRD) from SF sent to reprocessing
 - Uncertainties on U and Pu inventories
 - Operator calculations
 - Reprocessing plant measurements

Physical inventory verification (PIV)

- PIV yearly the period between PIVs not to exceed 14 months
 - Performed when core is refueled or opened
 - If core not refueled or opened PIV done with closed core
 - Multiple cores (VVER 440 twin reactor per facility)
 - > Do PIV during *one* of the core openings
 - Post PIV period does not exceed 3 months

PIV - Fresh Fuel Verification

- FF assemblies and separate fuel pins are:
 - Item counted
 - Verified for gross defects or by serial number ID (by random sampling)

MMCC - Portable Multi-channel Analyser + CdTe Detector

• MMCC Detects 186 keV U-235 γ peak in γ spectrum

- CdTe detector
 - ➤ inserted into fuel assembly
 - > gamma spectrum measured
- Definitive gross defect measurement of
 - > Fresh LEU fuel
 - ➤ U-235 is or is not present

PIV - Core Fuel Verification

Open core –

- —Assemblies item counted and
- —Acceptable C/S maintained either on
 - ➤ Open core or on removal routes

- Discharged core core is discharged to SF Pool
 - —Verify along with SF
 - Acceptable C/S maintained either on
 - ➤ Open core <u>or</u> on removal routes
- Closed cores
 - If under C/S the C/S system is evaluated

Surveillance

Surveillance Used in LWRs

- Reactor Hall
 - ➤ Core Fuel During Refueling: Type 2 LWR
 - Core Fuel / Spent Fuel / Casks Core Fuel: Type 1 LWR
- Separate SF Pool
 - ➤ Spent Fuel Pool and/or Exit Routes
- Exits (Large enough to move SF cask through)
 - ➤ Containment Hatch (Westinghouse PWRs)
 - ➤ Containment Hatch (VVER 1000)
 - Loading Bay in SF Pool (Type 2 LWR)

UNCLASSIFIED

UWTV - Underwater TV

- UWTV used to verify Core Fuel during refueling
 - The TV camera pans across the fuel
 - > Serial numbers are verified
 - > The total number of fuel assemblies counted
 - Compared to the operator's declaration

UNCLASSIFIED

PIV - Spent Fuel Verification... In practice

- SF Pools verified 100% for Gross Defects
 - Easier to verify all items then to select specific items in pool
 - ICVD SF and SF Pool conditions determine success of method
 - Water quality
 - > Fuel assembly burn-up
 - Residence time in pool by SF

- With failure of ICVD
 - > Use of SFAT or similar method is attempted
- IAEA has new intense interest in NON-FUEL items in SF pool

ICVD - Improved Cerenkov Viewing Device

ICVD Detects Cerenkov Glow From SF and Verifies

- Spent Fuel
 - ➤ Spent Fuel Pools
 - ➤ Spent Fuel in...
 - Baskets and/or
 - Casks prior to shipment
- Core Fuel
 - Core Fuel during refueling
 - To recover from *anomaly*
 - > EXAMPLE: Loss of "CofK" of Core
 - Recovered next PIV during refueling

SFAT - Spent Fuel Attribute Tester

SFAT Properties

- Detects
 - > Cs-137 660 keV gamma peak
 - > Characteristic of fission products
- Used to verify
 - > SF Pool fuel ICVD not usable
 - Too old Radiation decaying away
 - Fuel with low burn-up Too few FPs
 - > SF Pool items that may be
 - Dummy elements
 - Skeleton assemblies
 - Empty containers
 - ➤ ID by lack of a Cs-137 peak

UNCLASSIFIED

SFAT Issues

Attenuation of γ Source in SF Pool by Castor Material and H₂O

$$I=I_{o} e^{-(\mu_{H2O} x_{H2O} + \mu_{Fe} x_{Fe})}$$

- Castors with iron
 - Attenuates gammas
- Water covering SF in castor
 - Attenuates gammas
- If SFAT not close enough to SF
 - Inspector SFAT NDA of damaged SF castor
 - > Difficult to distinguish between...
 - Empty irradiated castor
 - Castor containing SF

HSGM - High Sensitivity Gamma Monitor

HSGM Detects Gamma Radiation from SF

- Gross defect measurement
- HSGM and CPMU
 - > Both very crude measurements
 - > Not very definitive
- Can give higher measurements from empty container for damaged SF as from full container
- Dummy element
 - Can be irradiated
 - ➤ Gives off gammas

Verification of Domestic and Int'l Transfers Spent Fuel - To Difficult-to-Access

- Transfers of SF into containers for long-term storage under SG but difficult-to-access
 - Item I.D.
 - NDA
 - ➤ High detection probability for gross and partial defects
 - Under dual C/S

Verification of Domestic and Int'l Transfers Fresh LEU Fuel

- Fresh LEU fuel since the last PIV
 - Verified at any inspection
 - Or at PIV

Material Balance Evaluation

- Evaluate non-zero SRD
 - (in LWRs normally zero)
- Evaluate non- zero MUF
 - (in LWRs normally zero)

Evaluate on item count, I.D., and defect test results

Confirm Absence of Unreported Production of Plutonium

PERFORM

Analysis of reactor shows it could not produce 1 SQ of unrecorded Pu per year

OR

- C/S on RPV to confirm RPV was closed AND
- C/S on open RPV to confirm that 1 SQ was not removed from the core AND
- Empty RPV confirm CF is in SF and none removed

AND

- C/S acceptable on SF pool OR
- Verify SF Pool after refueling with NDA where appropriate

Design Information Verification (DIV)

- Design info provided to Agency by the State is...
 - Examined
 - Verified
- Once a year re-examined

- Periodic verification of design information
 - To confirm continued validity
 - DIV includes
 - > Taking of environmental samples....

Typical Agency Yearly Schedule at LWR

- 3 interim inspections and PIV scheduled
- Special inspections for transfer of SF in casks
 - Verify SF as placed in cask
 - Follow with C/S to maintain CofK
- Pre PIV
 - Verify FF
 - Detach seals on reactor or transfer paths
 - Install temporary surveillance to reactor
- Post PIV
 - Attach seals on transfer paths (canal gate, etc,)

IAEA Containment Sealing Systems

IAEA Metal Seal

COBRA Seal (In-Situ verification)

 VACOSS Seal (Electronic Seal with fiber optic wire - can be opened and closed ONCE by operator)

LWR – Containment/Sealing

- Surveillance Instruments (Cameras, Surveillance Cabinets)
- Reactor Hall
 - Vessel Missile Shield (VVER 440)
 - Other means to immobilize Core Fuel
- SF Pool
 - Spent Fuel Racks and Pool Covers
 - > Immobilization of SF
 - Loaded SF casks ready for shipment to
 - > Interim Storage
 - Dry Storage
 - Off-site
 - Re-fueling crane temporary measure to avoid losing CofK
- Exit pathways
 - SF Pool canal gate and Exit hatches

Operator/Inspector Measurement System - Definitions

Total (relative) measurement uncertainty

$$\delta_{\rm i} = (\delta_{\rm O}^2 + \delta_{\rm I}^2)^{1/2}$$

METHOD CODES	INTERPRETATION	RELATIVE ERROR RANGES	DETECTABLE DEFECT SIZE
Н	Quantitative through NDA (Verification in the attribute mode using the least accurate method), or	$0.0625 < \delta_{i} \le 0.125$	GROSS
	Qualitative through NDA (e.g. Cerenkov, bundle counter)	Error can not be assigned	GROSS
F	Quantitative through NDA (Verification in the attribute mode using a better accurate method)	$0.010 < \delta_{i} \le 0.0625$	PARTIAL
Е	Quantitative through NDA (Verification in the variables mode using the most accurate method) e.g. K-edge densitometer	δ _i ≤ 0.01	BIAS
D	Quantitative through DA (Verification in the variables mode using the most accurate method)	$\delta_i \le 0.01$	BIAS

LWRs and RRCAs

- Research Reactors with 25MWth output have concerns with
 - Unreported Pu Production
- Use of reactor power monitor to observe power output for RRCA
 - Estimate Pu production
 - Thermal-hydraulic and radiation power monitors
- Reactor power monitor not used in LWRs
 - Intrusive nature
 - Operator supplies thermal output info
 - Possible satellite photo analysis expensive mode
- Need for tool to give power output information
 - Operational information
 - Possible Pu Production calculations

LWR Safeguards Goal and Issues

- Control of Spent Fuel source of PU
- Control of SF pool items targets for Pu production
- Control of LEU fuel -
 - Source of LEU for enrichment
 - Pu production in reactor
 - ➤ Understanding of power history of reactor
 - Possible role of Antineutrino Detector
- Control of MOX fuel source of unirradiated Pu
- Control of transfers SF that may be reprocessed for Pu

LWR Safeguards Needs

- SF Pool
 - Ability to insure no tampering with SF assembly
 - Assembly removal/substitution by dummy
 - Pin Diversion/substitution by dummy
- Thermal Power of LWRs
 - Verify operator's declaration
 - Possible role of Antineutrino Detector
- SF assembly inventory (of interest for reprocessing)
 - Operator's calculations
 - Verify operator's declaration at reprocessing plant
 - Develop independent means to verify SF
- Undeclared activities Possible role of Antineutrino Detector

